Autoplay
Autocomplete
Previous Lesson
Complete and Continue
AI Art Revolution - Train Neural Networks to Create Masterful Illustrations with Python
Machine Learning Fundamentals
01 Project Preview (3:34)
02 Project 2 Preview (1:06)
03 Project 3 Overview (0:47)
04 What You-ll Need (8:09)
Source Files
Collect and Process Data
01 Load Drawings Dataset (20:06)
02 Label Data (12:17)
03 Build A Training Dataset (8:30)
04 Visualize Dataset (6:20)
05 Batch And Shuffle Data (4:39)
Source Files
Build a Generative Neural Network
01 Build A Generator (13:46)
02 Generate Noise (11:22)
Source Files
Generative Neural Network Fundamentals
01 What Is A Generative Neural Network (7:26)
02 What Is A Convolutional Neural Network (7:04)
03 How To Build A Convolutional Neural Network (14:04)
04 How To Build A Dense Layer (10:48)
05 How To Build A Batch Normalization Layer (5:36)
06 Leaky Relu Activation Function (6:04)
07 Transposed Convolution Layer (10:34)
08 Hyperbolic Tangent (Tanh) Activation Function (2:59)
Source Files
Build a Discriminator Neural Network
01 How Do You Build A Discriminator (10:19)
02 Build A Discriminator (10:53)
Source Files
Evaluate the Model's Performance
01 Performance Of A Machine Learning Algorithm (4:14)
02 Calculate Loss (7:11)
03 What Is The Adam Optimizer (6:55)
04 Assign Optimizers (3:02)
Source Files
Train the Model to Draw
01 Build A Training Step (11:03)
02 Train The Model (6:54)
03 Visualize Training (29:10)
Source Files
Test the Model's Drawing Ability
01 Test The Model (9:22)
Source Files
05 How To Build A Batch Normalization Layer
Lesson content locked
If you're already enrolled,
you'll need to login
.
Enroll in Course to Unlock